题目内容
现有一枚质地均匀的骰子,连续投掷两次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是7的结果有多少种?
(3)向上的点数之和是7的概率是多少?
一枚质地均匀的骰子,连续投掷两次的不同情况有36种,其中向上的点数之和为7 的结果有6种;向上的点数之和为7 的概率为。
解析试题分析:(1)一枚质地均匀的骰子,连续投掷两次的不同情况如下:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),
共有36种不同结果。
(2)其中向上的点数之和为7 的结果有:
(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)共6种
(3)向上的点数之和为7 的概率为
答:一枚质地均匀的骰子,连续投掷两次的不同情况有36种,其中向上的点数之和为7 的结果有6种;向上的点数之和为7 的概率为。
考点:古典概型概率的计算
点评:中档题,古典概型概率的计算问题,关键是计算事件数。为防止重复或遗漏,常常利用“树图法”或“坐标法”。
某社团组织名志愿者利用周末和节假日参加社会公益活动,活动内容是:1、到各社区宣传慰问,倡导文明新风;2、到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:
| 宣传慰问 | 义工 | 总计 |
20至40岁 | 11 | 16 | 27 |
大于40岁 | 15 | 8 | 23 |
总计 | 26 | 24 | 50 |
(2) 上述抽取的6名志愿者中任取2名,求选到的志愿者年龄大于40岁的人数的数学期望.
从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
2013年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 | PM2.5浓度 (微克/立方米) | 频数(天) | 频率 |
第一组 | (0,25] | 5 | 0.25 |
第二组 | (25,50] | 10 | 0.5 |
第三组 | (50,75] | 3 | 0.15 |
第四组 | (75,100) | 2 | 0.1 |
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.
2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》。其中规定:居民区的PM2.5(大气中直径小于或等于2.5微米的颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米。某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 | PM2.5浓度 (微克/立方米 | 频数(天) | 频率 |
第一组 | (0,25] | 5 | 0.25 |
第二组 | (25,50] | 10 | 0.5 |
第三组 | (50,75] | 3 | 0.15 |
第四组 | (75,100) | 2 | 0.1 |
(Ⅱ)求样本平均数,并根据用样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.