题目内容
数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列的前项和为,求证:.
(Ⅰ) (Ⅱ)
解析试题分析:(Ⅰ)由已知:对于,总有 ①成立
∴ (n ≥ 2)②
①-②得
∴
∵均为正数,∴ (n ≥ 2)
∴数列是公差为1的等差数列
又n=1时,, 解得=1,
∴.()
(Ⅱ) 解:由(1)可知
考点:数列求通项求和及放缩法证明不等式
点评:由求的计算公式中的条件要引起注意
练习册系列答案
相关题目
等比数列中,,,分别是下表第一、二、三行中的某一个数,且,,中的任何两个数不在下表的同一列.
| 第一列 | 第二列 | 第三列 |
第一行 | 3 | 2 | 10 |
第二行 | 6 | 4 | 14 |
第三行 | 9 | 8 | 18 |
(Ⅱ)若数列满足:,求数列的前项和.
已知数列满足则等于( )
A.2 | B. | C.-3 | D. |