题目内容
如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。
(1)建系,利用,证明PB⊥DM
(2)
(3)先假设存在,求出法向量,可以算出无解,所以不存在符合要求的解.
(2)
(3)先假设存在,求出法向量,可以算出无解,所以不存在符合要求的解.
试题分析:(1)如图以A为原点建立空间直角坐标系
A(0,0,0),B(2,0,0),
C(2,1,0),D(0,2,0)
M(1,,1),N(1,0,1),
E(0,m,2-m),P(0,0,2)
(2,0,-2),(1,-,1),
="0"
(2)=(-2,1,0)平面ADMN法向量=(x,y,z),
=(0,2,0),=(1,0,1) ,
所以 ,即 ,解得=(1,0,-1),
设CD与平面ADMN所成角α,则.
(3)设平面ACN法向量=(x,y,z),
所以,解得=(1,-2,-1),
设,所以,
同理可以求出平面AEN的法向量,
因为,所以,
所以 ,
此方程无解,所以不存在符合要求的点.
点评:解决立体几何问题,可以建立空间向量,但是证明时也要根据相应的判定定理和性质定理,定理中要求的条件要一一列举出来,另外还要注意各种角的取值范围.
练习册系列答案
相关题目