题目内容

2.函数y=cos($\frac{x}{3}$+φ)(0≤φ<2π)在区间(-π,π)上单调递增,则φ的最大值是(  )
A.$\frac{π}{6}$B.$\frac{4π}{3}$C.$\frac{5π}{3}$D.$\frac{11π}{6}$

分析 由题意可得$\frac{1}{3}$(-π)+φ≥π+2kπ,且$\frac{1}{3}$•π+φ≤2π+2kπ,k∈z.再结合0≤φ<2π,可得φ的最大值.

解答 解:∵函数y=cos($\frac{x}{3}$+φ)(0≤φ<2π)在区间(-π,π)上单调递增,
∴$\frac{1}{3}$(-π)+φ≥π+2kπ,且$\frac{1}{3}$•π+φ≤2π+2kπ,k∈z,解得2kπ+$\frac{4π}{3}$≤φ≤$\frac{5π}{3}$+2kπ.
再结合0≤φ<2π,可得φ的最大值是$\frac{5π}{3}$,
故选:C.

点评 本题主要考查余弦函数的单调区间,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网