题目内容

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(3,1),其左、右焦点分别为F1、F2,且$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=-6,则椭圆E的离心率是(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2\sqrt{2}}{3}$

分析 设F1(c,0),F2(-c,0),则$\overrightarrow{{F}_{1}P}$=(3-c,1),$\overrightarrow{{F}_{2}P}$=(3+c,1),利用$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=-6,求出c,根据椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(3,1),可得$\frac{9}{{a}^{2}}+\frac{1}{{b}^{2}}=1$,求出a2=18,b2=2,即可求出椭圆E的离心率.

解答 解:设F1(c,0),F2(-c,0),则$\overrightarrow{{F}_{1}P}$=(3-c,1),$\overrightarrow{{F}_{2}P}$=(3+c,1),
∴$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=9-c2+1=-6,
∴c=4,
∴a2-b2=16,
∵椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(3,1),
∴$\frac{9}{{a}^{2}}+\frac{1}{{b}^{2}}=1$,
∴a2=18,b2=2,
∴e=$\frac{c}{a}$=$\frac{4}{3\sqrt{2}}$=$\frac{2\sqrt{2}}{3}$,
故选:D.

点评 本题考查了椭圆的方程与性质,考查学生分析问题的能力,求出a,b,即可求出椭圆E的离心率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网