题目内容

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1 , ∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.

(1)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1
(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.

【答案】
(1)解:在平面ABC内,过点P作直线l∥BC

∵直线l平面A1BC,BC平面A1BC,

∴直线l∥平面A1BC,

∵△ABC中,AB=AC,D是BC的中点,

∴AD⊥BC,结合l∥BC得AD⊥l

∵AA1⊥平面ABC,l平面ABC,∴AA1⊥l

∵AD、AA1是平面ADD1A1内的相交直线

∴直线l⊥平面ADD1A1


(2)解:连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF

由(I)知MN⊥平面A1AE,结合MN平面A1MN得平面A1MN⊥平面A1AE,

∵平面A1MN∩平面A1AE=A1P,AE⊥A1P,∴AE⊥平面A1MN,

∵EF⊥A1M,EF是AF在平面A1MN内的射影,

∴AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角

设AA1=1,则由AB=AC=2AA1,∠BAC=120°,可得∠BAD=60°,AB=2且AD=1

又∵P为AD的中点,∴M是AB的中点,得AP= ,AM=1

Rt△A1AP中,A1P= = ;Rt△A1AM中,A1M=

∴AE= = ,AF= =

∴Rt△AEF中,sin∠AFE= = ,可得cos∠AFE= =

即二面角A﹣A1M﹣N的余弦值等于


【解析】(1)在平面ABC内过点P作直线l∥BC,根据线面平行的判定定理得直线l∥平面A1BC.由等腰三角形“三线合一”得到AD⊥BC,从而得到AD⊥l,结合AA1⊥l且AD、AA1是平面ADD1A1内的相交直线,证出直线l⊥平面ADD1A1;(2)连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF.根据面面垂直判定定理,证出平面A1MN⊥平面A1AE,从而得到AE⊥平面A1MN,结合EF⊥A1M,由三垂线定理得AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角.设AA1=1,分别在Rt△A1AP中和△AEF中算出AE、AF的长,在Rt△AEF中,根据三角函数的定义算出sin∠AFE的值,结合同角三角函数的平方关系算出cos∠AFE的值,从而得出二面角A﹣A1M﹣N的余弦值.
【考点精析】通过灵活运用直线与平面垂直的判定,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网