题目内容

【题目】已知椭圆x2+4y2=4,直线l:y=x+m
(1)若l与椭圆有一个公共点,求m的值;
(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.

【答案】
(1)解:把直线y=x+m代入椭圆方程得:x2+4(x+m)2=4,即:5x2+8mx+4m2﹣4=0,

△=(8m)2﹣4×5×(4m2﹣4)=﹣16m2+80=0

解得:m=


(2)解:设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),

则x1,x2是方程5x2+8mx+4m2﹣4=0的两根,

由韦达定理可得:x1+x2=﹣ ,x1x2=

∴|AB|= = = =2;

∴m=±


【解析】(1)将直线的方程y=x+m与椭圆的方程x2+4y2=4联立,得到5x2+2mx+m2﹣1=0,利用△=0,即可求得m的取值范围;(2)利用两点间的距离公式,再借助于韦达定理即可得到:两交点AB之间的距离,列出|AB|=2,从而可求得m的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网