题目内容
已知函数
,
,
,
、
.
(Ⅰ)若
,判断
的奇偶性;
(Ⅱ) 若
,
是偶函数,求
;
(Ⅲ)是否存在
、
,使得
是奇函数但不是偶函数?若存在,试确定
与
的关系式;如果不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138830849.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138846849.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138861433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138877310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138892911.png)
(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138908732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138924865.png)
(Ⅱ) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138939546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138955750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138970339.png)
(Ⅲ)是否存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138877310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138970339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138955750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138877310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138970339.png)
(Ⅰ)
是非奇非偶函数.(Ⅱ)
;(Ⅲ)存在
、
满足
时,
是奇函数但不是偶函数.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139048510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139064580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138877310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138970339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139111715.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139126435.png)
试题分析:(Ⅰ) 方法一(定义法):
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031391423376.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139158882.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139048510.png)
方法二(特殊值法):由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139189529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139048510.png)
又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139220822.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139220847.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139048510.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139048510.png)
(Ⅱ) 方法一(定义法):
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031392821499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031392821534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139048510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139314675.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031393292180.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031393451289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139360640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031393761173.png)
方法二(特殊值法):
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138955750.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031394072799.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139423979.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031394382474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139360640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031393761173.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139064580.png)
(Ⅲ)方法一:假设存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138877310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138970339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138955750.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139719481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139735659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031397661184.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138892911.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139797613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139813535.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138877310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139860246.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139891742.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139906683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139922973.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139938693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139111715.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139938693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138955750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140000656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140016696.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140000656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031400471011.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140000656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140000656.png)
此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139126435.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139111715.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138955750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140000656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140016696.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140000656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140187993.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140000656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140296633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140312648.png)
此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139126435.png)
综上,存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138877310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138970339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139111715.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139126435.png)
方法二:假设存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138877310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138970339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003138955750.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140796624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031408111684.png)
化简整理得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140827942.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003139735659.png)
点评:(1)此题主要考查三角函数的奇偶性。判断一个函数奇偶性的步骤:一求函数的定义域,看定义域是否关于原点对称;二判断
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140889640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140889640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140936944.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140952847.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140936944.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003140998670.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目