题目内容

【题目】在四棱锥 中, 平面 ,底面 是梯形,

(1)求证:平面 平面
(2)设 为棱 上一点, ,试确定 的值使得二面角

【答案】
(1)解:∵ 平面 平面 平面
,在梯形 中,过点作
中, ,又在 中,
, ∵
平面 平面 ,∴ 平面 ,∵ 平面
,∵ 平面 平面 ,∴ 平面
平面 ,∴平面 平面

(2)解:

过点 于点 ,过点 于点 ,连 ,由(1)可知 平面 ,∴ 平面 ,∴
,∴ 平面 ,∴ ,∴ 是二面角 的平面角,
,∵ ,∴ ,∵ ,∴
,由(1)知 ,∴ ,又∵ ,∵ ,∴
,∵ ,∴ ;法二:以 为原点, 所在直线为 轴建立空间直角坐标系(如图)

,令 ,则
,∵ ,∴
,∵ 平面 ,∴ 是平面 的一个法向量,
设平面 的法向量为 ,则 ,即
不妨令 ,得 ,∵二面角
,解得 , ∵ 在棱 上,∴ ,故 为所求.
【解析】(1)在梯形ABCD中,过点作B作BH⊥CD于H,通过面面垂直的判定定理即得结论;
(2)过点Q作QM∥BC交PB于点M,过点M作MN⊥BD于点N,连QN.则∠QNM是二面角Q-BD-P的平面角,在Rt三角形MNQ中利用tan∠MNQ=计算即可.

练习册系列答案
相关题目

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量x(千辆)

2

3

4

5

8

每天一辆车平均成本y(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: (1)= +1.1,方程乙: (2)= +1.6.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: =yi 称为相应于点(xi , yi)的残差(也叫随机误差);

租用单车数量x(千辆)

2

3

4

5

8

每天一辆车平均成本y(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值 (1)

2.4

2.1

1.6

残差 (1)

0

﹣0.1

0.1

模型乙

估计值 (2)

2.3

2

1.9

残差 (2)

0.1

0

0

②分别计算模型甲与模型乙的残差平方和Q1及Q2 , 并通过比较Q1 , Q2的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入﹣成本).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网