题目内容
【题目】设是平面内互不平行的三个向量,,有下列命题:①方程不可能有两个不同的实数解;②方程有实数解的充要条件是;③方程有唯一的实数解;④方程没有实数解,其中真命题有_______________.(写出所有真命题的序号)
【答案】①④
【解析】
利用共面向量定理以及共线向量的性质一一判断即可得出答案.
因为是平面内互不平行的三个向量,,则由共面向量定理可得:共面时,有且仅有一对有序实数对使得成立;则由①可化简为,且共面可得有序实数对有唯一解,即方程有唯一实数解,则①方程不可能有两个不同的实数解正确;由①的分析可得方程有唯一实数解,则②的说法方程有实数解的充要条件是不正确;化简可得,则即得,因为向量不共线,所以无实数解,即方程无实数解,所以③不正确,④正确.
综上可得:①④正确.
故答案为:①④.
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的2×2列联表.请将列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
附参考公式及数据:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |