题目内容

已知椭圆C1
x2
a2
+
y2
b2
=1   (a>b>0)
的离心率为
3
3
,连接椭圆的四个顶点得到的四边形的面积为2
6

(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设O为坐标原点,取C2上不同于O的点S,以OS为直径作圆与C2相交另外一点R,求该圆面积的最小值时点S的坐标.
(1)由题意可知
c
a
=
3
2
a2=b2+c2
1
2
×2a×ab=2
6
解得
a=
3
b=
2
c=1

所以椭圆C1的方程是
x2
3
+
y2
2
=1

(2)∵|MP|=|MF2|,∴动点M到定直线l1:x=-1的距离等于它到定点F2(1,0)的距离,
∴动点M的轨迹C2是以l1为准线,F2为焦点的抛物线,
所以点M的轨迹C2的方程y2=4x.
(3)∵以OS为直径的圆C2相交于点R,∴以∠ORS=90°,即
OR
RS
=0

设S (x1,y1),R(x2,y2),
SR
=(x2-x1y2-y1)
OR
=(x2y2)

OR
SR
=x2(x2-x1)+y2(y2-y1)=
y22
(
y22
-
y21
)
16
+y2(y2-y1)
=0,
∵y1≠y2,y2≠0,化简得y1=-(y2+
16
y2
)

y21
=
y22
+
256
y22
+32≥
2
y22
256
y22
+32=64

当且仅当
y22
=
256
y22
,即
y22
=16
,y2=±4时等号成立.
圆的直径|OS|=
x21
+
y21
=
y41
16
+
y21
=
1
4
y41
+16
y21
=
1
4
(
y21
+8)2-64

y21
≥64,∴当
y21
=64,y1=±8,|OS|min=8
5

所以所求圆的面积的最小时,点S的坐标为(16,±8).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网