题目内容

18.设F为抛物线y2=4x的焦点,过F且倾斜角为30°的直线交抛物线于A、B两点,则|AB|=(  )
A.16B.6C.12D.7$\sqrt{3}$

分析 求出抛物线的焦点坐标F(1,0),用点斜式设出直线方程:y=$\frac{\sqrt{3}}{3}$(x-1),与抛物线方程联解得一个关于x的一元二次方程,利用根与系数的关系结合曲线的弦长的公式,可以求出线段AB的长度.

解答 解:根据抛物线y2=4x方程得:焦点坐标F(1,0),
直线AB的斜率为k=tan30°=$\frac{\sqrt{3}}{3}$,
由直线方程的点斜式方程,设AB:y=$\frac{\sqrt{3}}{3}$(x-1),
将直线方程代入到抛物线方程中,得:$\frac{1}{3}$(x-1)2=4x,
整理得:x2-14x+1=0,
设A(x1,y1),B(x2,y2),
由一元二次方程根与系数的关系得:x1+x2=14,x1•x2=1,所以弦长|AB|=$\sqrt{1+{k}^{2}}$|x1-x2|=$\sqrt{1+\frac{1}{3}}•\sqrt{196-4}$=16.
故选:A.

点评 本题以抛物线为载体,考查了圆锥曲线的弦长问题,属于难题.本题运用了直线方程与抛物线方程联解的方法,对运算的要求较高.利用一元二次方程根与系数的关系和弦长公式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网