题目内容
【题目】(本小题满分14分)已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)证明:当时,;
(Ⅲ)确定实数的所有可能取值,使得存在,当时,恒有.
【答案】(Ⅰ);(Ⅱ)详见解析;(Ⅲ).
【解析】
试题分析:(1)先求出函数的导数,令导函数大于0,解出即可;(2)构造函数F(x)=f(x)-x+1,先求出函F(x)的导数,根据函数的单调性证明即可;(3)通过讨论k的范围,结合函数的单调性求解即可
试题解析:(1)得.
得,解得
故的单调递增区间是
(2)令,
则有
当时,
所以在上单调递减,
故当时,,即当时,
(3)由(Ⅱ)知,当时,不存在满足题意。
当时,对于,有则
从而不存在满足题意。
当时,令,
由得,。
解得
当时,,故在内单调递增。
从而当,即
综上吗,k的取值范围是
练习册系列答案
相关题目
【题目】某企业有、两个岗位招聘大学毕业生,其中第一天收到这两个岗位投简历的大学生人数如下表:
岗位 | 岗位 | 总计 | |
女生 | 12 | 8 | 20 |
男生 | 24 | 56 | 80 |
总计 | 36 | 64 | 100 |
(1)根据以上数据判断是有的把握认为招聘的、两个岗位与性别有关?
(2)从投简历的女生中随机抽取两人,记其中投岗位的人数为,求的分布列和数学期望.
参考公式:,其中.
参考数据:
0.050 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |