题目内容
【题目】选修4-5:不等式选讲
已知函数.
(1)求不等式的解集;
(2)若对恒成立,求的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)根据“零点分段法”分为,,三种情形,分别解出不等式,再取并集即可;(2)法一:对恒成立等价于对恒成立,利用绝对值三角不等式,求得取得最小值,即可求得的取值范围;法二:设,则,根据绝对值三角不等式求得得最小值,从而求得的取值范围.
试题解析:(1)因为,
所以当时,由得;
当时,由得;
当时,由得.
综上,的解集为.
(2)法一:由得,
因为,当且仅当取等号,
所以当时,取得最小值.
所以当时,取得最小值,
故,即的取值范围为.
法二:设,则,
当时,取得最小值,
所以当时,取得最小值,
故时,即的取值范围为.
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量件 | 100 | 94 | 93 | 90 | 85 | 78 |
(1)若销量与单价服从线性相关关系,求该回归方程;
(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。
附:对于一组数据,,……,
其回归直线的斜率的最小二乘估计值为;
本题参考数值:.
【题目】某市为提高市民的戒烟意识,通过一个戒烟组织面向全市烟民征招志愿戒烟者,从符合条件的志愿者中随机抽取100名,将年龄分成,,,,五组,得到频率分布直方图如图所示.
(1)求图中的值,并估计这100名志愿者的平均年龄(同一组中的数据用该组区间的中点值作代表);
(2)若年龄在的志愿者中有2名女性烟民,现从年龄在的志愿者中随机抽取2人,求至少有一名女性烟民的概率;
(3)该戒烟组织向志愿者推荐了,两种戒烟方案,这100名志愿者自愿选取戒烟方案,并将戒烟效果进行统计如下:
有效 | 无效 | 合计 | |
方案 | 48 | 60 | |
方案 | 36 | ||
合计 |
完成上面的列联表,并判断是否有的把握认为戒烟方案是否有效与方案选取有关.
参考公式:,.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在范围内(单位:毫米,以下同),按规定直径在内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:
直径分组 | |||||||
甲基地频数 | 10 | 30 | 120 | 175 | 125 | 35 | 5 |
乙基地频数 | 5 | 35 | 115 | 165 | 110 | 60 | 10 |
(1)根据以上统计数据完成下面列联表,并回答是否有以上的把握认为“桔柚直径与所在基地有关?”
甲基地 | 乙基地 | 合计 | |
优质品 | _________ | _________ | _________ |
非优质品 | _________ | _________ | _________ |
合计 | _________ | _________ | _________ |
(2)求优质品率较高的基地的500个桔柚直径的样本平均数(同一组数据用该区间的中点值作代表);
(3)记甲基地直径在范围内的五个桔柚分别为、、、、,现从中任取二个,求含桔柚的概率.
附:,.
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |