题目内容
为了得到函数y=2sin(x∈R)的图象,只需把函数y=2sinx(x∈R)的图象上所有的点经过怎样的变换得到?
见解析
解析
在已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(,-2).(1)求f(x)的解析式;(2)当x∈[,]时,求f(x)的值域.
设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(1)若点P的坐标为(,),求f(θ)的值;(2)若点P(x,y)为平面区域Ω: 上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
已知函数f(x)=2·sincos-sin(x+π).(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.
已知函数f(x)=sin2ωx+sinωxsin(ω>0)的最小正周期为.(1)写出函数f(x)的单调递增区间;(2)求函数f(x)在区间上的取值范围.
已知函数f(x)=2sin.(1)求函数y=f(x)的最小正周期及单调递增区间;(2)若f=-,求f(x0)的值.
已知,且,求sinx、cosx、tanx的值
已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,).(1)求sin 2α-tan α的值;(2)若函数f(x)=cos(x-α)cos α-sin(x-α)sin α,求函数y=f-2f2(x)在区间上的值域.
已知sin(α-3π)=2cos(α-4π),求的值.