题目内容
已知函数f(x)=2sin.(1)求函数y=f(x)的最小正周期及单调递增区间;(2)若f=-,求f(x0)的值.
(1),k∈Z(2)或-
解析
已知函数的部分图像如图所示.(1)求函数f(x)的解析式,并写出f(x)的单调减区间;(2)的内角分别是A,B,C.若f(A)=1,,求sinC的值.
已知向量a=(sinθ,cosθ),b=(,1),其中θ∈(0,).(1)若a∥b,求sinθ和cosθ的值;(2)若f(θ)=(a+b)2,求f(θ)的值域.
(2013·盐城二模)已知函数f(x)=4sinxcos(x+)+.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值及取得最值时x的值.
为了得到函数y=2sin(x∈R)的图象,只需把函数y=2sinx(x∈R)的图象上所有的点经过怎样的变换得到?
如果点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角θ所在的象限;
已知函数f(x)=2cos2-sin x.(1)求函数f(x)的最小正周期和值域; (2)若α为第二象限角,且f=,求的值.
已知函数()的最小正周期为.(1)求函数的单调增区间;(2)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.若在上至少含有个零点,求的最小值.
已知sin(3π+θ)=,求的值.