题目内容

9.已知,如图,AB是eO的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E
(1)求证:FA∥BE
(2)求证:$\frac{AP}{PC}$=$\frac{FA}{AB}$.

分析 (1)证明∠OAF=∠B,即可证明FA∥BE
(2)证明△APC∽△FAC,可得$\frac{AP}{FA}$=$\frac{PC}{AC}$,即$\frac{AP}{PC}$=$\frac{FA}{AC}$,利用AB=AC,即可证明$\frac{AP}{PC}$=$\frac{FA}{AB}$.

解答 证明:(1)在⊙O中,∵直径AB与FP交于点O,∴OA=OF
∴∠OAF=∠F,
∵∠B=∠F,∴∠OAF=∠B,
∴FA∥BE;
(2)∵AC为⊙O的切线,PA是弦,
∴∠PAC=∠F
∵∠C=∠C,
∴△APC∽△FAC,
∴$\frac{AP}{FA}$=$\frac{PC}{AC}$,
∴$\frac{AP}{PC}$=$\frac{FA}{AC}$,
∵AB=AC,
∴$\frac{AP}{PC}$=$\frac{FA}{AB}$.

点评 本题考查两直线平行的证明,考查三角形相似的判定与性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网