题目内容
【题目】已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.
【答案】
(1)解:∵﹣1≤2x﹣1﹣2≤6,∴1≤2x﹣1≤8,
∴1≤2x﹣1≤8,∴1≤x≤4.
∴B={x|1≤x≤4}.
又∵A={x|x<﹣4,或x>2},
∴A∩B={x|2<x≤4},…(4分)(CUA)∪(CUB)
=CU(A∩B)={x|x≤2,或x>4}
(2)解:∵集合M={x|2k﹣1≤x≤2k+1}是集合A={x|x<﹣4,或x>2}的子集
∴2k﹣1>2或2k+1<﹣4,
∴ 或 .
即实数k的取值范围为
【解析】(1)求出B,利用两个集合的交集的定义,A∩B,利用(CUA)∪(CUB)=CU(A∩B),求出(UA)∪(UB);(2)利用集合M={x|2k﹣1≤x≤2k+1}是集合A={x|x<﹣4,或x>2}的子集,可得2k﹣1>2或2k+1<﹣4,即可求出实数k的取值范围.
练习册系列答案
相关题目