题目内容
(2012•衡阳模拟)已知集合A={(x,y)|x+y-2=0},B={(x,y)|x-2y+4=0},则A∩B=( )
分析:求A∩B,即解两个集合对应的方程构成的方程组(或不等式组),本题中由集合A、B的条件联立方程组并解方程组,就不难得到答案.
解答:解:∵A={(x,y)|x+y-2=0},B={(x,y)|x-2y+4=0},
∴A∩B中的元素满足:
解得:
则A∩B={(0,2)}
故选:D.
∴A∩B中的元素满足:
|
解得:
|
则A∩B={(0,2)}
故选:D.
点评:本题考查交集及其运算、集合的表示方法,由于本题的结果表示含一个点的点集,因此要特别注意正确的点集的表示形式.
练习册系列答案
相关题目