题目内容
已知椭圆![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_ST/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_ST/1.png)
(1)若过F1的直线交椭圆E于P,Q两点,且
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_ST/2.png)
(2)若椭圆E过点(0,1),且过F1作两条互相垂直的直线,它们分别交椭圆E于A,C和B,D,求四边形ABCD面积的最大值和最小值.
【答案】分析:(1)利用椭圆的第二定义,构建三角形,求得三边长,即可求得直线PQ的斜率;
(2)求出椭圆方程,当AC为2a,DB⊥x轴时,面积有最大值,最大值为2;当两条直线斜率都存在时,求出AC,BD的长,表示出四边形ABCD面积为S=
|AC||BD|,利用基本不等式,即可求得结论.
解答:解:(1)设椭圆的左准线为l,作PD⊥x轴于D,作PN⊥l于N,由第二定义得|PN|=
|PF1|.
作QM⊥l于M,得|QM|=
|F1Q|=
|PF1|,
作QE⊥PN于E,交轴于点A得|EP|=4|AF1|=
|PF1|,
∴|F1D|=3|AF1|=
|PF1|,
∴|PD|=
|PF1|,
∴直线PQ的斜率为±
=
;
(2)由题意,b=1,又
,∴a=2,b=1,c=
,
∴椭圆方程为
.
∵DB、AC为过焦点的两条直线,∴当AC为2a,DB⊥x轴时,面积有最大值,最大值为2;
当两条直线斜率都存在时,F1(-
,0),设直线AC的方程为y=k(x-
)
与椭圆联立消去y,(
)x2-
x+3k2-1=0
设A(x1,y1),C(x2,y2),则x1+x2=
,x1x2=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/17.png)
∴|AC|=
|x1-x2|=
=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/20.png)
同理可得|BD|=
,
∴四边形ABCD面积为S=
|AC||BD|=
×![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/24.png)
令t=
,则t≥2,∴S=
×
=2×
=2(1-
)
∵t≥2,∴
,∴
≤S<2
∴四边形ABCD面积最小值为
.
点评:本题考查椭圆的第二定义,考查直线与椭圆的位置关系,考查四边形面积的计算,考查学生分析解决问题的能力,属于中档题.
(2)求出椭圆方程,当AC为2a,DB⊥x轴时,面积有最大值,最大值为2;当两条直线斜率都存在时,求出AC,BD的长,表示出四边形ABCD面积为S=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/0.png)
解答:解:(1)设椭圆的左准线为l,作PD⊥x轴于D,作PN⊥l于N,由第二定义得|PN|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/1.png)
作QM⊥l于M,得|QM|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/2.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/3.png)
作QE⊥PN于E,交轴于点A得|EP|=4|AF1|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/4.png)
∴|F1D|=3|AF1|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/5.png)
∴|PD|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/6.png)
∴直线PQ的斜率为±
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/7.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/8.png)
(2)由题意,b=1,又
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/9.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/10.png)
∴椭圆方程为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/11.png)
∵DB、AC为过焦点的两条直线,∴当AC为2a,DB⊥x轴时,面积有最大值,最大值为2;
当两条直线斜率都存在时,F1(-
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/12.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/13.png)
与椭圆联立消去y,(
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/14.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/15.png)
设A(x1,y1),C(x2,y2),则x1+x2=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/16.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/17.png)
∴|AC|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/18.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/19.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/20.png)
同理可得|BD|=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/21.png)
∴四边形ABCD面积为S=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/22.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/23.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/24.png)
令t=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/25.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/26.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/27.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/28.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/29.png)
∵t≥2,∴
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/30.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/31.png)
∴四边形ABCD面积最小值为
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131202113031431916278/SYS201312021130314319162021_DA/32.png)
点评:本题考查椭圆的第二定义,考查直线与椭圆的位置关系,考查四边形面积的计算,考查学生分析解决问题的能力,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目