题目内容

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知cosA= ,b=5c.
(1)求sinC;
(2)若△ABC的面积S= sinBsinC,求a的值.

【答案】
(1)解:在△ABC中,∵a2=b2+c2﹣2bccosA=26c2﹣10c2× =18c2

∴a=3 c,

∵cosA=

∵,0<A<π,

∴sinA=

=

∴sinC= = =


(2)解:∵b=5c,

= =5,

∴sinB=5sinC,

∴S= sinBsiS=nC= sin2C=

∵S= bcsinA= c2=

=

∴a=


【解析】(1)利用余弦定理可求的a=3,进而根据cosA求得sinA,利用正弦定理即可求得sinC.(2)根据b和c的关系,进而求得sinB和sinC的关系,把sinC代入面积公式求得三角形的面积,进而利用三角形面积公式求得 bcsinA=S,求得a
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网