题目内容
两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.
.
解析试题分析:本体几何概型,涉及到两个量之间的关系,故要建立平面坐标系,分别用表示两个量,并用不等式表示要求条件以建立目标区域.然后计算概率:.
试题解析:设两人分别于x时和y时到达约见地点,要使两人能在约定时间范围内相见,
当且仅当-≤x-y≤.
.
考点:几何概型.
练习册系列答案
相关题目
某企业主要生产甲、乙两种品牌的空调,由于受到空调在保修期内维修费等因素的影响,企业生产每台空调的利润与该空调首次出现故障的时间有关,甲、乙两种品牌空调的保修期均为3年,现从该厂已售出的两种品牌空调中各随机抽取50台,统计数据如下:
品牌 | 甲 | 乙 | |||||
首次出现故障时间 x年 | |||||||
空调数量(台) | 1 | 2 | 4 | 43 | 2 | 3 | 45 |
每台利润(千元) | 1 | 2 | 2.5 | 2.7 | 1.5 | 2.6 | 2.8 |
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌空调中随机抽取一台,求首次出现故障发生在保修期内的概率;
(2)若该厂生产的空调均能售出,记生产一台甲品牌空调的利润为X1,生产一台乙品牌空调的利润为X2,分别求X1,X2的分布列;
(3)该厂预计今后这两种品牌空调销量相当,但由于资金限制,只能生产其中一种品牌空调,若从经济效益的角度考虑,你认为应该生产哪种品牌的空调?说明理由。