题目内容
【题目】已知椭圆经过两点,为坐标原点.
(1)求椭圆的标准方程;
(2)设动直线与椭圆有且仅有一个公共点,且与圆相交于两点,试问直线与的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
【答案】(1);(2)为定值,
【解析】
(1)将两点坐标代入椭圆方程,建立的方程组,即可求出结论;
(2)先求出直线斜率不存在时的值,当直线斜率存在时,设其方程为,与椭圆方程联立,根据已知求出关系,再将直线与圆方程联立,根据根与系数关系将坐标用表示,进而求出,即可得出结论.
(1)依题意,,解得,
所以椭圆方程为.
(2)当直线l的斜率不存在时,直线l的方程为.
若直线l的方程为,则M,N的坐标为,
.
若直线l的方程为,则M,N的坐标为,
.
当直线l的斜率存在时,可设直线,
与椭圆方程联立可得,
由相切可得,
.
又,消去得
,
设,,则
∴,
.
故为定值且定值为.
综上,为定值且定值为.
练习册系列答案
相关题目