ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªÍÖÔ²$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1£¨a£¾b£¾0£©¾¹ýµãP£¨${\frac{{\sqrt{6}}}{2}$£¬$\frac{1}{2}}$£©£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬¶¯µã M£¨2£¬t£©£¨t£¾0£©£®£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÇóÒÔ O M£¨ OΪ×ø±êԵ㣩Ϊֱ¾¶ÇÒ±»Ö±Ïß3x-4y-5=0½ØµÃµÄÏÒ³¤Îª2µÄÔ²µÄ·½³Ì£»
£¨3£©ÉèFÊÇÍÖÔ²µÄÓÒ½¹µã£¬¹ýµãF×÷ O MµÄ´¹ÏßÓëÒÔ O MΪֱ¾¶µÄÔ²½»ÓÚµã N£¬Ö¤Ã÷Ï߶ΠO NµÄ³¤Îª¶¨Öµ£¬²¢Çó³öÕâ¸ö¶¨Öµ£®
·ÖÎö £¨1£©°Ñµã$P£¨\;\frac{{\sqrt{6}}}{2}\;£¬\;\frac{1}{2}\;£©$´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{{{{£¨\;\frac{{\sqrt{6}}}{2}\;£©}^2}}}{a^2}+\frac{{{{£¨\;\frac{1}{2}\;£©}^2}}}{b^2}=1$£¬ÓÖ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬a2=b2+c2£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£»
£¨2£©ÒÔOMΪֱ¾¶µÄÔ²µÄÔ²ÐÄΪ$£¨\;1\;£¬\;\frac{t}{2}\;£©$£¬°ë¾¶$r=\sqrt{\frac{t^2}{4}+1}$£¬¿ÉµÃÔ²µÄ±ê×¼·½³Ì£»ÓÉÓÚÒÔOMΪֱ¾¶µÄÔ²±»Ö±Ïß3x-4y-5=0½ØµÃµÄÏÒ³¤Îª2£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃÔ²Ðĵ½Ö±Ïß3x-4y-5=0µÄ¾àÀëd£¬ÀûÓÃÏÒ³¤¹«Ê½¿ÉµÃÏÒ³¤=2$\sqrt{{r}^{2}-{d}^{2}}$¼´¿ÉµÃ³ö£®
£¨3£©·½·¨Ò»£º¹ýµãF×÷OMµÄ´¹Ïߣ¬´¹×ãÉèΪK£®Ö±ÏßOMµÄ·½³ÌΪ$y=\frac{t}{2}x$£¬Ö±ÏßFNµÄ·½³ÌΪ$y=-\frac{2}{t}£¨x-1£©$£¬ÁªÁ¢½âµÃK×ø±ê£¬¿ÉµÃ|OK|£¬|OM|£¬ÀûÓÃ|ON|2=|OK|•|OM|¼´¿ÉÖ¤Ã÷£®
·½·¨¶þ£ºÉèN£¨x0£¬y0£©£¬Ôò$\overrightarrow{FN}=£¨\;{x_0}-1\;£¬\;{y_0}\;£©$£¬$\overrightarrow{OM}=£¨\;2\;£¬\;t\;£©$£¬$\overrightarrow{MN}=£¨\;{x_0}-2\;£¬\;{y_0}-t\;£©$£¬$\overrightarrow{ON}=£¨\;{x_0}\;£¬\;{y_0}\;£©$£®ÀûÓÃ$\overrightarrow{FN}¡Í\overrightarrow{OM}$£¬$\overrightarrow{MN}¡Í\overrightarrow{ON}$£¬¿ÉÖ¤$|ON|=\sqrt{{x}_{0}^{2}+{y}_{0}^{2}}$Ϊ¶¨Öµ£®
½â´ð £¨1£©½â£ºÓÉÌâÒâµÃ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬¢Ù
¡ßÍÖÔ²¾¹ýµã$P£¨\;\frac{{\sqrt{6}}}{2}\;£¬\;\frac{1}{2}\;£©$£¬¡à$\frac{{{{£¨\;\frac{{\sqrt{6}}}{2}\;£©}^2}}}{a^2}+\frac{{{{£¨\;\frac{1}{2}\;£©}^2}}}{b^2}=1$¢Ú
ÓÖa2=b2+c2¢Û
ÓÉ¢Ù¢Ú¢Û½âµÃa2=2£¬b2=c2=1£®
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®
£¨2£©½â£ºÒÔOMΪֱ¾¶µÄÔ²µÄÔ²ÐÄΪ$£¨\;1\;£¬\;\frac{t}{2}\;£©$£¬°ë¾¶$r=\sqrt{\frac{t^2}{4}+1}$£¬
¹ÊÔ²µÄ·½³ÌΪ${£¨x-1£©^2}+{£¨y-\frac{t}{2}£©^2}=\frac{t^2}{4}+1$£®
¡ßÒÔOMΪֱ¾¶µÄÔ²±»Ö±Ïß3x-4y-5=0½ØµÃµÄÏÒ³¤Îª2£¬
¡àÔ²Ðĵ½Ö±Ïß3x-4y-5=0µÄ¾àÀë$d=\sqrt{{r^2}-1}=\sqrt{\frac{t^2}{4}+1-1}=\frac{t}{2}$£®
¡à$\frac{|3-2t-5|}{5}=\frac{t}{2}$£¬¼´2|2t+2|=5t£¬
¹Ê4t+4=5t£¬»ò4t+4=-5t£¬
½âµÃt=4£¬»ò$t=-\frac{4}{9}$£®
ÓÖt£¾0£¬¹Êt=4£®
ËùÇóÔ²µÄ·½³ÌΪ£¨x-1£©2+£¨y-2£©2=5£®
£¨3£©Ö¤Ã÷£º·½·¨Ò»£º¹ýµãF×÷OMµÄ´¹Ïߣ¬´¹×ãÉèΪK£®
Ö±ÏßOMµÄ·½³ÌΪ$y=\frac{t}{2}x$£¬Ö±ÏßFNµÄ·½³ÌΪ$y=-\frac{2}{t}£¨x-1£©$£®
ÓÉ$\left\{\begin{array}{l}y=\frac{t}{2}x\\ y=-\frac{2}{t}£¨x-1£©\end{array}\right.$£¬½âµÃ$x=\frac{4}{{{t^2}+4}}$£¬¹Ê$K£¨\;\frac{4}{{{t^2}+4}}\;£¬\;\frac{2t}{{{t^2}+4}}\;£©$£®
¡à$|OK|\;=\sqrt{\frac{16}{{{{£¨{t^2}+4£©}^2}}}+\frac{{4{t^2}}}{{{{£¨{t^2}+4£©}^2}}}}=\sqrt{\frac{4}{{{t^2}+4}}}$£»
$|OM|\;=\sqrt{4+{t^2}}$£®
ÓÖ$|ON{|^2}\;=\;|OK|•|OM|\;=\sqrt{\frac{4}{{4+{t^2}}}}•\sqrt{4+{t^2}}=2$£®
¡à$|ON|\;=\sqrt{2}$£®
¡àÏ߶ÎONµÄ³¤Îª¶¨Öµ$\sqrt{2}$£®
·½·¨¶þ£ºÉèN£¨x0£¬y0£©£¬Ôò$\overrightarrow{FN}=£¨\;{x_0}-1\;£¬\;{y_0}\;£©$£¬$\overrightarrow{OM}=£¨\;2\;£¬\;t\;£©$£¬$\overrightarrow{MN}=£¨\;{x_0}-2\;£¬\;{y_0}-t\;£©$£¬$\overrightarrow{ON}=£¨\;{x_0}\;£¬\;{y_0}\;£©$£®
¡ß$\overrightarrow{FN}¡Í\overrightarrow{OM}$£¬¡à2£¨x0-1£©+ty0=0£®¡à2x0+ty0=2£®
ÓÖ¡ß$\overrightarrow{MN}¡Í\overrightarrow{ON}$£¬¡àx0£¨x0-2£©+y0£¨y0-t£©=0£®
¡à$x_0^2+y_0^2=2{x_0}+t{y_0}=2$£®
¡à$|\overrightarrow{ON}|\;=\sqrt{x_0^2+y_0^2}=\sqrt{2}$Ϊ¶¨Öµ£®
µãÆÀ ±¾Ì⿼²éÁËԲ׶ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²¼°Ô²µÄÏཻÎÊÌâ¡¢ÏòÁ¿´¹Ö±ÓëÊýÁ¿»ýÖ®¼äµÄ¹Øϵ¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽµÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | $\overline{{X}_{¼×}}$£¼$\overline{{X}_{ÒÒ}}$£¬Òұȼ׳ɼ¨Îȶ¨ | B£® | $\overline{{X}_{¼×}}$£¼$\overline{{X}_{ÒÒ}}$£¬¼×±ÈÒҳɼ¨Îȶ¨ | ||
C£® | $\overline{{X}_{¼×}}$£¾$\overline{{X}_{ÒÒ}}$£¬¼×±ÈÒҳɼ¨Îȶ¨ | D£® | $\overline{{X}_{¼×}}$£¾$\overline{{X}_{ÒÒ}}$£¬Òұȼ׳ɼ¨Îȶ¨ |
A£® | $\frac{8}{3}$ | B£® | 4 | C£® | $\frac{4}{3}$ | D£® | 8 |
A£® | $\frac{1}{3}$ | B£® | $\frac{{\sqrt{2}}}{3}$ | C£® | $\frac{{\sqrt{6}}}{3}$ | D£® | $\frac{{\sqrt{3}}}{3}$ |
A£® | $\frac{2\sqrt{34}}{17}$ | B£® | $\frac{\sqrt{6}}{3}$ | C£® | $\frac{4\sqrt{7}}{7}$ | D£® | $\frac{4}{5}$ |