题目内容

10.无穷数列{an}满足an+1=$\frac{{a}_{n}-\sqrt{2}+1}{1+(\sqrt{2}-1){a}_{n}}$.证明{an}是周期列.

分析 通过an+1=$\frac{{a}_{n}-\sqrt{2}+1}{1+(\sqrt{2}-1){a}_{n}}$化简可知an+1=$\frac{{a}_{n-1}-1}{{a}_{n-1}+1}$,从而an-1=$\frac{{a}_{n-3}-1}{{a}_{n-3}+1}$,代入计算可知an+1=-$\frac{1}{{a}_{n-3}}$,从而an-3=-$\frac{1}{{a}_{n-7}}$,再次代入上式可得结论.

解答 证明:依题意,an+1=$\frac{{a}_{n}-\sqrt{2}+1}{1+(\sqrt{2}-1){a}_{n}}$
=$\frac{\frac{{a}_{n-1}-(\sqrt{2}-1)}{1+(\sqrt{2}-1){a}_{n-1}}-(\sqrt{2}-1)}{1+(\sqrt{2}-1)•\frac{{a}_{n-1}-(\sqrt{2}-1)}{1+(\sqrt{2}-1){a}_{n-1}}}$
=$\frac{(2\sqrt{2}-2){a}_{n-1}-(2\sqrt{2}-2)}{(2\sqrt{2}-2){a}_{n-1}+(2\sqrt{2}-2)}$
=$\frac{{a}_{n-1}-1}{{a}_{n-1}+1}$,
即an+1=$\frac{{a}_{n-1}-1}{{a}_{n-1}+1}$,
∴an-1=$\frac{{a}_{n-3}-1}{{a}_{n-3}+1}$,
∴an+1=$\frac{{a}_{n-1}-1}{{a}_{n-1}+1}$
=$\frac{\frac{{a}_{n-3}-1}{{a}_{n-3}+1}-1}{\frac{{a}_{n-3}-1}{{a}_{n-3}+1}+1}$
=$\frac{-2}{2{a}_{n-3}}$
=-$\frac{1}{{a}_{n-3}}$,
∴an-3=-$\frac{1}{{a}_{n-7}}$,
∴an+1=-$\frac{1}{{a}_{n-3}}$=-$\frac{1}{-\frac{1}{{a}_{n-7}}}$=an-7
∴an=an-8
即数列{an}是周期为8的周期数列.

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网