题目内容

如图,已知抛物线C:y2=2px和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)作两条直线与⊙M相切于A、B两点,分别交抛物线为E、F两点,圆心点M到抛物线准线的距离为
17
4

(1)求抛物线C的方程;
(2)当∠AHB的角平分线垂直x轴时,求直线EF的斜率.
(1)∵点M(4,0)到抛物线准线的距离为4+
p
2
=
17
4

∴p=
1
2
,即抛物线C的方程为y2=x.
(2)∵当∠AHB的角平分线垂直x轴时,点H(4,2),∴kHE=-kHF
设E(x1,y1),F(x2,y2),
yH-y1
xH-x1
=-
yH-y2
xH-x2

yH-y1
y2H
-
y21
=-
yH-y2
y2H
-
y22

∴y1+y2=-2yH=-4.
kEF=
y2-y1
x2-x1
=
y2-y1
y22
-
y21
=
1
y1+y2
=-
1
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网