题目内容

20.在正方体ABCD-A1B1C1D1中,AB=2,点A,B,C,D在球O上,球O与BA1的另一个交点为E,且AE⊥BA1,则球O的表面积为 (  )
A.B.C.12πD.16π

分析 设与CD1的另一个交点为F,连结EF,DF,得BCEF是矩形,则三棱柱ABE-DCF是球O的内接直三棱柱,求出球O的半径,即可求出球O表面积.

解答 解:设与CD1的另一个交点为F,连结EF,DF,得BCEF是矩形,
则三棱柱ABE-DCF是球O的内接直三棱柱,
∵正方体ABCD-A1B1C1D1中,AB=2,AE⊥BA1
∴AE=BE=$\sqrt{2}$,
∴球O的半径R=$\sqrt{2}$,
∴球O表面积为:4πR2=4π•($\sqrt{2}$)2=8π.
故选:B.

点评 本题主要考查球的表面积公式,以及球内接三棱柱的关系,考查空间想象能力以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网