题目内容

4.($\frac{2+2i}{\sqrt{3}-i}$)7-($\frac{2-2i}{1+\sqrt{3}i}$)7=$(-8\sqrt{3}-8)+(8\sqrt{3}-8)i$.

分析 利用复数代数形式的乘除运算分别化简括号内部的代数式,然后利用复数代数形式的乘除运算化简求得答案.

解答 解:∵$\frac{2+2i}{\sqrt{3}-i}=\frac{(2+2i)(\sqrt{3}+i)}{(\sqrt{3}-i)(\sqrt{3}+i)}=\frac{2\sqrt{3}-2+(2\sqrt{3}+2)i}{4}$=$\frac{\sqrt{3}-1}{2}+\frac{\sqrt{3}+1}{2}i$=$\frac{1}{2}(1+i)(\sqrt{3}+i)$,
$\frac{2-2i}{1+\sqrt{3}i}=\frac{(2-2i)(1-\sqrt{3}i)}{(1+\sqrt{3}i)(1-\sqrt{3}i)}=\frac{2-2\sqrt{3}-(2\sqrt{3}+2)i}{4}$=$\frac{1-\sqrt{3}}{2}-\frac{\sqrt{3}+1}{2}i$=$-\frac{1}{2}(1+i)(\sqrt{3}+i)$,
∴($\frac{2+2i}{\sqrt{3}-i}$)7-($\frac{2-2i}{1+\sqrt{3}i}$)7=$\frac{1}{{2}^{6}}(1+i)^{7}(\sqrt{3}+i)^{7}$.
∵(1+i)2=2i,∴(1+i)7=(2i)3(1+i)=8-8i,
∵$(\sqrt{3}+i)^{2}=2+2\sqrt{3}i$,∴$(\sqrt{3}+i)^{7}=-64\sqrt{3}-64i$,
∴原式=$\frac{1}{64}(8-8i)(-64\sqrt{3}-64i)=(-8\sqrt{3}-8)+(8\sqrt{3}-8)i$.
故答案为:$(-8\sqrt{3}-8)+(8\sqrt{3}-8)i$.

点评 本题考查了复数代数形式的混合运算,考查了学生灵活的计算能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网