题目内容
【题目】如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.
(1)求异面直线AE与A1F所成角的大小;
(2)求平面AEF与平面ABC所成角的余弦值.
【答案】(1)60.(2)
【解析】
试题本题的关键是建立适当的空间直角 坐标系,
建立坐标系如图,写出相关向量坐标,利用向量夹角公式即可;
由(1)求出平面和平面的法向量n和m,利用即可,注意在本题中
平面与平面所成的角为锐角,所以
试题解析: (1)建立如图所示的直角坐标系,则
,,,,从而
,.
记与的夹角为,则有
.
又由异面直线与所成角的范围为,可得异面直线与所成的角为
(2)记平面和平面的法向量分别为n和m,则由题设可令,且有平面的法向量为,,.
由,得;由,得.
所以,即.记平面与平面所成的角为,有.
由题意可知为锐角,所以
练习册系列答案
相关题目