题目内容

【题目】定义在R上的函数f(x)的导函数为f'(x),若对任意实数x,有f(x)>f'(x),且f(x)+2017为奇函数,则不等式f(x)+2017ex<0的解集是(
A.(﹣∞,0)
B.(0,+∞)
C.
D.

【答案】B
【解析】解:设2017g(x)= ,由f(x)>f′(x), 得:g′(x)= <0,
故函数g(x)在R递减,
由f(x)+2017为奇函数,得f(0)=﹣2017,
∴g(0)=﹣1,
∵f(x)+2017ex<0,∴ <﹣2017,即g(x)<g(0),
结合函数的单调性得:x>0,
故不等式f(x)+2017ex<0的解集是(0,+∞).
故选B.
【考点精析】通过灵活运用函数奇偶性的性质和利用导数研究函数的单调性,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网