题目内容
【题目】已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为
(1)求椭圆的方程;
(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.
【答案】(1);(2)或
【解析】
(1)由椭圆的定义可知,焦点三角形的周长为,从而求出.写出直线的方程,与椭圆方程联立,根据交点横坐标为,求出和,从而写出椭圆的方程;
(2)设出P、Q两点坐标,由可知点为的重心,根据重心坐标公式可将点用P、Q两点坐标来表示.由点在圆O上,知点M的坐标满足圆O的方程,得式.为直线l与椭圆的两个交点,用韦达定理表示,将其代入方程,再利用求得的范围,最终求出实数的取值范围.
解:(1)由题意知.
,
直线的方程为
∵直线与椭圆的另一个交点的横坐标为
解得或(舍去)
,
∴椭圆的方程为
(2)设
.
∴点为的重心,
∵点在圆上,
由得
,
代入方程,得
,
即
由得
解得.
或
练习册系列答案
相关题目
【题目】某市一所医院在某时间段为发烧超过38的病人特设发热门诊,该门诊记录了连续5天昼夜温差()与就诊人数的资料:
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
昼夜温差() | 8 | 10 | 13 | 12 | 7 |
就诊人数(人) | 18 | 25 | 28 | 27 | 17 |
(1)求的相关系数,并说明昼夜温差()与就诊人数具有很强的线性相关关系.
(2)求就诊人数(人)关于出昼夜温差()的线性回归方程,预测昼夜温差为9时的就诊人数.
附:样本的相关系数为,当时认为两个变量有很强的线性相关关系.
回归直线方程为,其中,.
参考数据:,