题目内容
【题目】如图,在三棱锥P-ABC中,AC⊥BC,且,AC=BC=2,D,E分别为AB,PB中点,PD⊥平面ABC,PD=3.
(1)求直线CE与直线PA夹角的余弦值;
(2)求直线PC与平面DEC夹角的正弦值.
【答案】(1);(2).
【解析】
(1)建立空间直角坐标系,确定各点坐标,求出夹角,即可得结果;
(2)求出平面DEC的法向量,其与法向量夹角的余弦的绝对值,即为所求角的正弦值.
建立如图所示的空间直角坐标系,易知C(0,0,0),
A(2,0,0),D(1,1,0),E(,,),P(1,1,3),
设直线CE与直线PA夹角为,则
整理得;
直线CE与直线PA夹角的余弦值;
(2)设直线PC与平面DEC夹角为,
设平面DEC的法向量为,
因为,
所以有
取,解得,,
即面DEC的一个法向量为,,
.
直线PC与平面DEC夹角的正弦值为.
练习册系列答案
相关题目