题目内容
【题目】如图,在四棱锥中,四边形为菱形,且是等边三角形,点是侧面内的一个动点,且满足,则点所形成的轨迹长度是_______.
【答案】
【解析】
根据题意,Q点在一个过BD,且与直线AC垂直的平面内,且Q点的轨迹是该平面内与平面PBC的交线段的长度.据此进行求解.
根据题意,连接AC,BD,记其交点为O,取PC上一点为M,连接MB,MD,作图如下:
若满足题意,又,故平面DBQ,
则点Q只要在平面DBQ与平面PBC的交线上即可.
假设如图所示:平面DBM与平面DBQ是同一个平面,
则Q点的轨迹就是线段BM.
根据假设,此时直线平面DBM,则.
故三角形MOC为直角三角形.
因为三角形PAD是等边三角形,三角形BAD也是等边三角形,
故AD,又因为BC//AD,故BCPB,
故三角形PBC为直角三角形,故
故在三角形PAC中,
由余弦定理可得:
故在直角三角形MOC中,
在直角三角形PBC中,
=
在三角形BCM中:
故可得:.
故答案为.
【题目】某共享单车经营企业欲向甲市投放单车,为制定适宜的经营策略,该企业首先在已投放单车的乙市进行单车使用情况调查.调查过程分随机问卷、整理分析及开座谈会三个阶段.在随机问卷阶段,A,B两个调查小组分赴全市不同区域发放问卷并及时收回;在整理分析阶段,两个调查小组从所获取的有效问卷中,针对15至45岁的人群,按比例随机抽取了300份,进行了数据统计,具体情况如下表:
组别 年龄 | A组统计结果 | B组统计结果 | ||
经常使用单车 | 偶尔使用单车 | 经常使用单车 | 偶尔使用单车 | |
27人 | 13人 | 40人 | 20人 | |
23人 | 17人 | 35人 | 25人 | |
20人 | 20人 | 35人 | 25人 |
(1)先用分层抽样的方法从上述300人中按“年龄是否达到35岁”抽出一个容量为60人的样本,再用分层抽样的方法将“年龄达到35岁”的被抽个体数分配到“经常使用单车”和“偶尔使用单车”中去.求这60人中“年龄达到35岁且偶尔使用单车”的人数;
(2)从统计数据可直观得出“是否经常使用共享单车与年龄(记作岁)有关”的结论.在用独立性检验的方法说明该结论成立时,为使犯错误的概率尽可能小,年龄应取25还是35?请通过比较的观测值的大小加以说明.
参考公式:,其中.