题目内容
【题目】如图,在长方体ABCD﹣A1B1C1D1中,AB=1,BC=,点M在棱CC1上,且MD1⊥MA,则当△MAD1的面积最小时,棱CC1的长为( )
A. B. C. 2 D.
【答案】A
【解析】
如图所示,建立空间直角坐标系,,设 , ,
,即,
,当且仅当时取等号,所以 ,故选A.
【方法点晴】本题主要考查空间向量垂直的坐标表示以及立体几何中的最值问题,属于难题.解决立体几何中的最值问题一般有两种方法:一是几何意义,特别是转化为点到直线距离、到平面的距离以及平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是用的这种思路,利用均值不等式法求三角形面积最值的.
练习册系列答案
相关题目
【题目】某校为了解开展校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 | [20,40) | [40,60) | [60,80) | [80,100] |
频数 | 6 | a | 24 | b |
(1)求a,b,c的值;
(2)先用分层抽样的方法从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,再从这10人中任选4人,记所选4人的量化总分为ξ,求ξ的分布列及数学期望E(ξ);
(3)某评估机构以指标(,其中表示的方差)来评估该校开展安全教育活动的成效.若≥0.7,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(2)的条件下,判断该校是否应调整安全教育方案.