题目内容
本小题满分12分)设函数在及时取得极值.(Ⅰ)求a、b的值(6分);(Ⅱ)若对于任意的,都有成立,求c的取值范围(6分)
(2)
解析
设函数,(1)若函数在处与直线相切;①求实数的值;②求函数上的最大值;(2)当时,若不等式对所有的都成立,求实数的取值范围.
(本小题满分12分)已知函数.(1)当时,求的极值;(2)当时,试比较与的大小;(3)求证:().
已知函数.(1)若在上是增函数,求实数的取值范围;(2)若是的极值点,求在上的最小值和最大值.
已知函数在点处取得极值。(1)求的值;(2)若有极大值28,求在上的最小值。
(本题满分13分)为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本(万元)与处理量(吨)之间的函数关系可近似地表示为: , 且每处理一吨二氧化碳可得价值为万元的某种化工产品. (Ⅰ)当 时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损? (Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.
已知函数f(x)=x2+lnx.(1)求函数f(x)的单调区间;(2)求证:当x>1时,x2+lnx<x3.
已知函数。(1)若,函数在上既能取到极大值,又能取到极小值,求的取值范围;(2)当时,对任意的恒成立,求的取值范围;
(本大题12分)已知函数在上为单调递增函数.(Ⅰ)求实数的取值范围;(Ⅱ)若,,求的最小值.