题目内容
【题目】已知函数.
(1)讨论函数的单调性;
(2)设函数图象上不重合的两点.证明:.(是直线的斜率)
【答案】(1)①当时,函数在上单调递增;②当时,函数在上单调递增,在上单调递减.(2)证明见解析
【解析】
(1)先由题意,得到函数定义域,对函数求导,分别讨论和两种情况,解对应的不等式,即可得出其单调性;
(2)根据斜率公式,由题意,得到,再由,将证明的问题转化为证明,令,即证时,成立,设,对其求导,用导数的方法求其范围,即可得出结果.
(1)函数的定义域为,
且
①当时,,此时在单调递增;
②当时,令可得或(舍),,
由得,由得,
所以在上单调递增,在上单调递减.
综上:①当时,函数在上单调递增;
②当时,函数在上单调递增,在上单调递减.
(2)由题意得,
所以
又,
要证成立,
即证:成立,
即证:成立.
令,即证时,成立.
设
则
所以函数在上是增函数,
所以,都有,
即,,
所以
练习册系列答案
相关题目