题目内容
7.求直线l1:x-2y+1=0关于直线l:x-2y-5=0对称的直线方程l2的方程为7x-4y-28=0.分析 设直线l2上任意一点为P(x,y),则P关于直线L:x-2y-5=0的对称点P′(m,n)在直线l1上,由对称性可得mn的方程组,解方程组代入直线l1化简得到的xy的方程即为所求.
解答 解:设直线l2上任意一点为P(x,y),
则P关于直线L:x-2y-5=0的对称点P′(m,n)在直线l1上,
由对称性可得$\left\{\begin{array}{l}{\frac{y-n}{x-m}•\frac{1}{2}=-1}\\{\frac{x+m}{2}-\frac{2(y+n)}{2}-5=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=\frac{x+2y+5}{3}}\\{n=\frac{4x-y-10}{3}}\end{array}\right.$,
代入直线l1可得:$\frac{x+2y+5}{3}$-$\frac{2(4x-y-10)}{3}$+1=0,
化简可得所求直线方程为:7x-4y-28=0
故答案为:7x-4y-28=0.
点评 本题考查直线的对称性,涉及直线垂直和中点公式,属基础题.
练习册系列答案
相关题目
15.P(x,y)在线段AB上运动,已知A(2,4),B(5,-2),则$\frac{y+1}{x+1}$的取值范围是( )
A. | [-$\frac{1}{6}$,$\frac{5}{3}$] | B. | (-∞,-$\frac{1}{6}$]∪[$\frac{5}{3}$,+∞) | C. | [-$\frac{1}{6}$,0)∁(0,$\frac{5}{3}$] | D. | (-$\frac{1}{6}$,$\frac{5}{3}$) |
12.若椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的离心率为$\frac{1}{2}$,则m=( )
A. | $\frac{9}{4}$ | B. | 4 | C. | $\frac{9}{4}$或4 | D. | $\frac{3}{2}$ |
19.下列有关命题的说法中错误的是( )
A. | “若x2+y2=0,则x,y全为0”的否命题是真命题 | |
B. | 函数f(x)=ex+x-2的零点所在区间是(1,2) | |
C. | 命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x2-3x+2≠0” | |
D. | 对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0 |
16.下面是一程序,该程序的运行结果是( )
A. | 1,2 | B. | 1,1 | C. | 2,1 | D. | 2,2 |
17.已知椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$的左右焦点为F1、F2,点P为其上动点,点Q(3,2),则|PF1|-|PQ|的最大值为( )
A. | $6-\sqrt{5}$ | B. | $\sqrt{29}-6$ | C. | $6+\sqrt{5}$ | D. | $\sqrt{29}-4$ |