题目内容

17.已知椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$的左右焦点为F1、F2,点P为其上动点,点Q(3,2),则|PF1|-|PQ|的最大值为(  )
A.$6-\sqrt{5}$B.$\sqrt{29}-6$C.$6+\sqrt{5}$D.$\sqrt{29}-4$

分析 由|PF1|-|PQ|=2a-(|PF2|+|PQ|)≤2a-|QF2|,即可得出.

解答 解:如图所示.
F1(-2,0),F2(2,0).
|QF2|=$\sqrt{(3-2)^{2}+{2}^{2}}$=$\sqrt{5}$.
由椭圆的定义可得:|PF1|+|PF2|=2a=6.
∴|PF1|-|PQ|=2a-(|PF2|+|PQ|)≤2a-|QF2|=6-$\sqrt{5}$.
故选:A.

点评 本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网