题目内容
12.在(1+2x)10的展开式中.(1)求系数最大的项;
(2)若x=2.5,则第几项的值最大?
分析 (1)根据通项公式为Tr+1=${C}_{10}^{r}$•2r•xr,由$\left\{\begin{array}{l}{{C}_{10}^{r}{•2}^{r}{≥C}_{10}^{r-1}{•2}^{r-1}}\\{{C}_{10}^{r}{•2}^{r}{≥C}_{10}^{r+1}{•2}^{r+1}}\end{array}\right.$ 求得整数r的值,可得系数最大的项.
(2)根据通项公式为Tr+1=${C}_{10}^{r}$•5r,再由$\left\{\begin{array}{l}{{C}_{10}^{r}{•5}^{r}{≥C}_{10}^{r-1}{•5}^{r-1}}\\{{C}_{10}^{r}{•5}^{r}{≥C}_{10}^{r+1}{•5}^{r+1}}\end{array}\right.$,求得整数r的值,可得第几项的值最大.
解答 解:(1)(1+2x)10的展开式的通项公式为Tr+1=${C}_{10}^{r}$•2r•xr,由$\left\{\begin{array}{l}{{C}_{10}^{r}{•2}^{r}{≥C}_{10}^{r-1}{•2}^{r-1}}\\{{C}_{10}^{r}{•2}^{r}{≥C}_{10}^{r+1}{•2}^{r+1}}\end{array}\right.$,
求得$\frac{19}{3}$≤r≤$\frac{22}{3}$,∴r=7,即系数最大的项为第8项T8=${C}_{10}^{7}$•27•x3=15360x3.
(2)若x=2.5,则(1+2x)10的展开式的通项公式为Tr+1=${C}_{10}^{r}$•2r•xr=${C}_{10}^{r}$•5r,
再由$\left\{\begin{array}{l}{{C}_{10}^{r}{•5}^{r}{≥C}_{10}^{r-1}{•5}^{r-1}}\\{{C}_{10}^{r}{•5}^{r}{≥C}_{10}^{r+1}{•5}^{r+1}}\end{array}\right.$,求得$\frac{49}{6}$≤r≤$\frac{55}{6}$,∴r=9,
即第10项的值最大.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
A. | 120+16π | B. | 120+8π | C. | 120+4π | D. | 60+8π |