题目内容

2.在锐角三角形ABC中,A=2B,a,b,c所对的角分别为A、B、C,求$\frac{a}{b}$的取值范围.

分析 由已知及正弦定理可解得$\frac{a}{b}$=2cosB,由$0<A<\frac{π}{2}$,可得$0<B<\frac{π}{4}$,解得cosB∈($\frac{\sqrt{2}}{2}$,1),即可解得$\frac{a}{b}$的取值范围.

解答 解:∵锐角三角形ABC中,A=2B,sinB≠0,
∴由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{a}{sin2B}=\frac{a}{2sinBcosB}$,
∴$\frac{a}{b}$=2cosB,
∵$0<A<\frac{π}{2}$,可得$0<B<\frac{π}{4}$,
∴cosB∈($\frac{\sqrt{2}}{2}$,1),
∴$\frac{a}{b}$=2cosB∈($\sqrt{2}$,2).

点评 本题主要考查了正弦定理,二倍角的正弦函数公式,余弦函数的图象和性质的应用,熟练掌握正弦定理,余弦函数的图象和性质是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网