题目内容

【题目】对于任意实数x,符号[x]表示不超过x的最大整数,例如:[﹣2.5]=﹣3,[1.5]=1,[5]=5,那么[log21]+[log22]+[log23]+…+[log21023]+[log21024]=(
A.8204
B.4102
C.2048
D.1024

【答案】A
【解析】解:由题意知, 当2n≤x<2n+1时,[log2x]=n,
即[log22n]=[log2(2n+1)]=…=[log2(2n+1﹣1]=n,
故有2n个n,
故[log21]+[log22]+[log23]+…+[log21023]+[log21024]
=0+2×1+4×2+8×3+16×4+32×5+64×6+128×7×256×8+512×9+10
=8204,
故选:A.
【考点精析】根据题目的已知条件,利用函数的值的相关知识可以得到问题的答案,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网