题目内容

18.已知正实数x,y满足$\frac{1}{1+2x}$+$\frac{1}{1+3y}$=$\frac{1}{2}$,则xy的最小值等于$\frac{9}{4}$.

分析 由于正实数x,y满足条$\frac{1}{1+2x}$+$\frac{1}{1+3y}$=$\frac{1}{2}$,用x表示y,构造函数f(x)=xy,再利用导数研究函数的单调性极值与最值即可得出.

解答 解:由$\frac{1}{1+2x}$+$\frac{1}{1+3y}$=$\frac{1}{2}$,解得:y=$\frac{2x+3}{3(2x-1)}$>0,x>$\frac{1}{2}$,
∴xy=$\frac{x(2x+3)}{3(2x-1)}$=f(x),
∴f′(x)=$\frac{3(2x+1)(2x-3)}{{(6x-3)}^{2}}$,(x>$\frac{1}{2}$),
令f′(x)>0,解得:x>$\frac{3}{2}$,令f′(x)<0,解得:$\frac{1}{2}$<x$\frac{3}{2}$,
∴函数f(x)在($\frac{1}{2}$,$\frac{3}{2}$)递减,在($\frac{3}{2}$,+∞)递增,
∴f(x)最小值=f($\frac{3}{2}$)=$\frac{9}{4}$,
故答案为:$\frac{9}{4}$.

点评 本题考查了利用导数研究函数的单调性极值与最值,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网