题目内容

【题目】已知{an}是等差数列,设数列{bn}的前n项和为Sn,且2bnb11+Sn),bn≠0,又a2b24a7+b311

1)求{an}{bn}的通项公式;

2)令cnanbnnN*),求{cn}的前n项和Tn

【答案】(1)annbn2n1(2)Tn=(n12n+1

【解析】

1)运用数列的递推式,以及等比数列的通项公式可得bn{an}是公差为的等差数列,运用等差数列的通项公式可得首项和公差,可得所求通项公式;
2)求得,由数列的错位相减法求和,结合等比数列的求和公式,即可得到所求和.

12bnb11+Sn),bn≠0

n1时,2b1b11+S1)=b11+b1),解得b11

n≥2时,2bn11+Sn1,且2bn1+Sn

相减可得2bn2bn1SnSn1bn

bn2bn1

可得bn2n1

设{an}是公差为d的等差数列,

a2b24a7+b311即为a1+d2a1+6d7

解得a1d1,可得ann

2cnanbnn2n1

n项和

两式相减可得﹣Tn1+2+4+…+2n1n2n

n2n

化简可得Tn=(n12n+1

练习册系列答案
相关题目

【题目】已知函数,且).

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最大值.

【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .

【解析】试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.

试题解析】

(Ⅰ)

,则.

,∴上单调递增,

从而得上单调递增,又∵

∴当时, ,当时,

因此, 的单调增区间为,单调减区间为.

(Ⅱ)由(Ⅰ)得上单调递减,在上单调递增,

由此可知.

.

.

∵当时, ,∴上单调递增.

又∵,∴当时, ;当时, .

①当时, ,即,这时,

②当时, ,即,这时, .

综上, 上的最大值为:当时,

时, .

[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.

型】解答
束】
22

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网