题目内容

【题目】已知向量 =(sinx,﹣1),向量 =( cosx,﹣ ),函数f(x)=( +
(1)求f(x)的最小正周期T;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2 ,c=4,且f(A)恰是f(x)在[0, ]上的最大值,求A和b.

【答案】
(1)解:∵向量 =(sinx,﹣1),向量 =( cosx,﹣ ),

∴f(x)=( + =sin2x+1+ sinxcosx+ = +1+ sin2x+ = sin2x﹣ cos2x+2=sin(2x﹣ )+2,

∵ω=2,

∴函数f(x)的最小正周期T=


(2)解:由(1)知:f(x)=sin(2x﹣ )+2,

∵x∈[0, ],

∴﹣ ≤2x﹣

∴当2x﹣ = 时,f(x)取得最大值3,此时x=

∴由f(A)=3得:A=

由余弦定理,得a2=b2+c2﹣2bccosA,

∴12=b2+16﹣4b,即(b﹣2)2=0,

∴b=2.


【解析】(1)由两向量的坐标,利用平面向量的数量积运法则列出f(x)解析式,利用二倍角的正弦、余弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出最小正周期;(2)根据x的范围,求出这个角的范围,利用正弦函数的性质求出f(x)的最大值,以及此时x的值,由f(A)为最大值求出A的度数,利用余弦定理求出b的值即可.
【考点精析】解答此题的关键在于理解两角和与差的正弦公式的相关知识,掌握两角和与差的正弦公式:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网