ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²x2 |
a2 |
y2 |
b2 |
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÈôC¡¢D·Ö±ðÊÇÍÖÔ²³¤µÄ×ó¡¢ÓҶ˵㣬¶¯µãMÂú×ãMD¡ÍCD£¬Á¬½ÓCM£¬½»ÍÖÔ²ÓÚµãP£®Ö¤Ã÷£º
OM |
OP |
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÊÔÎÊxÖáÉÏÊÇ·ñ´æÒìÓÚµãCµÄ¶¨µãQ£¬Ê¹µÃÒÔMPΪֱ¾¶µÄÔ²ºã¹ýÖ±ÏßDP¡¢MQµÄ½»µã£¬Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÌâÒâÖªa=2£¬b=c£¬b2=2£¬ÓÉ´Ë¿ÉÖªÍÖÔ²·½³ÌΪ
+
=1£®
£¨2£©ÉèM£¨2£¬y0£©£¬P£¨x1£¬y1£©£¬Ôò
=(x1£¬y1)£¬
=(2£¬y0)£¬Ö±ÏßCM£ºy=
(x+2)£¬¼´y=
x+
y0£¬´úÈëÍÖÔ²·½³Ìx2+2y2=4£¬µÃ(1+
)x2+
x+
-4=0£¬È»ºóÀûÓøùÓëϵÊýµÄ¹ØϵÄܹ»ÍƵ¼³ö
•
Ϊ¶¨Öµ£®
£¨3£©Éè´æÔÚQ£¨m£¬0£©Âú×ãÌõ¼þ£¬ÔòMQ¡ÍDP£®
=(m-2£¬-y0)£¬
=(-
£¬
)£¬ÔÙÓÉ
•
=0µÃ-
(m-2)-
=0£¬ÓÉ´Ë¿ÉÖª´æÔÚQ£¨0£¬0£©Âú×ãÌõ¼þ£®
x2 |
4 |
y2 |
2 |
£¨2£©ÉèM£¨2£¬y0£©£¬P£¨x1£¬y1£©£¬Ôò
OP |
OM |
y0 |
4 |
y0 |
4 |
1 |
2 |
| ||
8 |
1 |
2 |
y | 2 0 |
1 |
2 |
y | 2 0 |
OM |
OP |
£¨3£©Éè´æÔÚQ£¨m£¬0£©Âú×ãÌõ¼þ£¬ÔòMQ¡ÍDP£®
MQ |
DP |
4
| ||
|
8y0 | ||
|
MQ |
DP |
4
| ||
|
8
| ||
|
½â´ð£º½â£º£¨1£©a=2£¬b=c£¬a2=b2+c2£¬¡àb2=2£»
¡àÍÖÔ²·½³ÌΪ
+
=1£¨4·Ö£©
£¨2£©C£¨-2£¬0£©£¬D£¨2£¬0£©£¬ÉèM£¨2£¬y0£©£¬P£¨x1£¬y1£©£¬
Ôò
=(x1£¬y1)£¬
=(2£¬y0)
Ö±ÏßCM£ºy=
(x+2)£¬¼´y=
x+
y0£¬´úÈëÍÖÔ²·½³Ìx2+2y2=4£¬
µÃ(1+
)x2+
x+
-4=0£¨6·Ö£©
¡ßx1=-
£¬¡àx1=-
£¬¡ày1=
£¬¡à
=(-
£¬
)£¨8·Ö£©
¡à
•
=-
+
=
=4£¨¶¨Öµ£©£¨10·Ö£©
£¨3£©Éè´æÔÚQ£¨m£¬0£©Âú×ãÌõ¼þ£¬ÔòMQ¡ÍDP£¨11·Ö£©
=(m-2£¬-y0)£¬
=(-
£¬
)£¨12·Ö£©
ÔòÓÉ
•
=0µÃ-
(m-2)-
=0£¬´Ó¶øµÃm=0
¡à´æÔÚQ£¨0£¬0£©Âú×ãÌõ¼þ£¨14·Ö£©
¡àÍÖÔ²·½³ÌΪ
x2 |
4 |
y2 |
2 |
£¨2£©C£¨-2£¬0£©£¬D£¨2£¬0£©£¬ÉèM£¨2£¬y0£©£¬P£¨x1£¬y1£©£¬
Ôò
OP |
OM |
Ö±ÏßCM£ºy=
y0 |
4 |
y0 |
4 |
1 |
2 |
µÃ(1+
| ||
8 |
1 |
2 |
y | 2 0 |
1 |
2 |
y | 2 0 |
¡ßx1=-
1 |
2 |
4(
| ||
|
2(
| ||
|
8y0 | ||
|
OP |
2(
| ||
|
8y0 | ||
|
¡à
OP |
OM |
4(
| ||
|
8
| ||
|
4
| ||
|
£¨3£©Éè´æÔÚQ£¨m£¬0£©Âú×ãÌõ¼þ£¬ÔòMQ¡ÍDP£¨11·Ö£©
MQ |
DP |
4
| ||
|
8y0 | ||
|
ÔòÓÉ
MQ |
DP |
4
| ||
|
8
| ||
|
¡à´æÔÚQ£¨0£¬0£©Âú×ãÌõ¼þ£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÖ±ÏߺÍÍÖÔ²µÄλÖùØϵ£¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿