题目内容
【题目】用0,1,2,3,4这五个数字组成无重复数字的自然数.
(Ⅰ)在组成的三位数中,求所有偶数的个数;
(Ⅱ)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301,423等都是“凹数”,试求“凹数”的个数;
(Ⅲ)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.
【答案】(Ⅰ)共有30个符合题意的三位偶数。
(Ⅱ)共有20个符合题意的“凹数
(Ⅲ)共有28个符合题意的五位数
【解析】
试题分析:在正自然数中,零不能处在最高位,(1)偶数的个位数为偶数,所以只能为0,2,4,根据排列公式求出偶数个数即可;(2)由题意可知十位数可为0,1,2,分别从剩余的数字中取两个进行排列;(3)5个数字中只有两个奇数,所以可将1,3以及夹在中间的偶数看作整体,并与剩余的两个偶数进行排列计算.
试题解析:(1)将所有的三位偶数分为两类:
(i)若个位数为,则共有(个);
(ii)若个位数为或,则共有(个),
所以,共有个符合题意的三位偶数.
(2)将这些“凹数”分为三类:
(i)若十位数字为,则共有(个);
(ii)若十位数字为,则共有(个);
(iii)若十位数字为,则共有(个),
所以,共有个符合题意的“凹数”.
(3)将符合题意的五位数分为三类:
(i)若两个奇数数字在一、三位置,则共有(个);
(ii)若两个奇数数字在二、四位置,则共有(个);
(iii)若两个奇数数字在三、五位置,则共有(个),
所以,共有个符合题意的五位数.
【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量(kg) | 300 | 500 |
概率 | 0.5 | 0.5 |
作物市场价格(元/kg) | 6 | 10 |
概率 | 0.4 | 0.6 |
(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.