题目内容
【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.
(Ⅰ)由折线图得,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程,并预测公司2017年5月份(即时)的市场占有率;
(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不形同,考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表见上表.
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
(参考公式:回归直线方程为,其中)
【答案】(1) 线性回归方程为 ,公司2017年5月份的市场占有率预计为23% (2) 应该采购款单车
【解析】试题分析:(1)根据折线图及平均数公式可求出与的值从而可得样本中心点的坐标,从而求可得公式中所需数据,求出,再结合样本中心点的性质可得,进而可得关于的回归方程,将代入回归方程即可得结果;(2)根据表格中的数据,算出每辆款车可使用年的概率,从而可得每辆款车可产生的利润期望值,同理可得每辆款车可产生的利润期望值,比较两期望值的大小即可得出结论.
试题解析:(Ⅰ)计算可得,
.
.月度市场占有率与月份序号之间的线性回归方程为.
当时,.故公司2017年5月份的市场占有率预计为23%.
(Ⅱ)由频率估计概率,每辆款车可使用1年、2年、3年和4年的概率分别为0.2、0.35、0.35和0.1,每辆款车可产生的利润期望值为
(元).
频率估计概率,每辆款车可使用1年、2年、3年和4年的概率分别为0.1、0.3、0.4和0.2,
每辆款车可产生的利润期望值为:
(元),应该采购款单车.
【方法点晴】本题主要考查折线图的应用与线性回归方程,以及离散型随机变量的分布列与期望,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为; 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.