题目内容
(本题12分)已知集合
是同时满足下列两个性质的函数
组成的集合:
①
在其定义域上是单调增函数或单调减函数;
②在
的定义域内存在区间
,使得
在
上的值域是
.
(1)判断函数
是否属于集合
?并说明理由.若是,则请求出区间
;
(2)若函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945334426.gif)
,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945100327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945115270.gif)
①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945115270.gif)
②在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945115270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945162277.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945115270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945162277.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945240408.gif)
(1)判断函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945256356.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945100327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945162277.gif)
(2)若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945334426.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945349350.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945365185.gif)
(1)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945396271.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945100327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945443280.gif)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945458350.gif)
解: (1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945396271.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945505425.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945536183.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945396271.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945505425.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945396271.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945162277.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945661343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945708749.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945724518.gif)
故函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945396271.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945100327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945443280.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231629458331640.gif)
(2) 设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945864423.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945880276.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945958391.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945536183.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946004467.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946020128.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945162277.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946067427.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946098497.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946114402.gif)
即方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946129383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945958391.gif)
[法1]:方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946160410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945958391.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946192319.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946207604.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946238594.gif)
从而有:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946254998.gif)
[法2]:要使方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946160410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945958391.gif)
即使方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946316398.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945958391.gif)
如图,当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946348447.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946363272.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946363266.gif)
当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946348447.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946394304.gif)
方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946316398.gif)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946426644.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946457246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162946472237.gif)
因此,利用数形结合得实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945365185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823162945458350.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目