题目内容
【题目】设f(x)=alnx+ + x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(1)求a的值;
(2)求函数f(x)的极值.
【答案】
(1)解:求导函数可得
∵曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
∴f′(1)=0,∴ ,
∴a=﹣1;
(2)解:由(1)知, (x>0)
=
令f′(x)=0,可得x=1或x= (舍去)
∵0<x<1时,f′(x)<0,函数递减;x>1时,f′(x)>0,函数递增
∴x=1时,函数f(x)取得极小值为3
【解析】(1) 求导函数,利用曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,可得f′(1)=0,从而可求a的值;(2) 由(1)知, (x>0), = ,确定函数的单调性,即可求得函数f(x)的极值.
练习册系列答案
相关题目
【题目】(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式,)