ÌâÄ¿ÄÚÈÝ
¸ø³ö¶¨Ò壺Èôm-
£¼x¡Üm+
£¨ÆäÖÐmΪÕûÊý£©£¬Ôòm½Ð×öÀëʵÊýx×î½üµÄÕûÊý£¬¼Ç×÷{x}=m£®ÔÚ´Ë»ù´¡Éϸø³öÏÂÁйØÓÚº¯Êýf£¨x£©=|x-{x}|µÄËĸöÃüÌ⣺
¢Ùº¯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪR£¬ÖµÓòΪ[0£¬
]£»
¢Úº¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=
(k¡ÊZ)¶Ô³Æ£»
¢Ûº¯Êýy=f£¨x£©ÊÇżº¯Êý£»
¢Üº¯Êýy=f£¨x£©ÔÚ[-
£¬
]ÉÏÊÇÔöº¯Êý£® ÆäÖÐÕýÈ·µÄÃüÌâµÄÐòºÅÊÇ
1 |
2 |
1 |
2 |
¢Ùº¯Êýy=f£¨x£©µÄ¶¨ÒåÓòΪR£¬ÖµÓòΪ[0£¬
1 |
2 |
¢Úº¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=
k |
2 |
¢Ûº¯Êýy=f£¨x£©ÊÇżº¯Êý£»
¢Üº¯Êýy=f£¨x£©ÔÚ[-
1 |
2 |
1 |
2 |
¢Ù¢Ú¢Û
¢Ù¢Ú¢Û
£®·ÖÎö£º±¾ÌâΪж¨ÒåÎÊÌ⣬ÒòΪmΪÕûÊý£¬¹Ê¿ÉÈ¡mΪ¼¸¸öÌØÊâµÄÕûÊý½øÐÐÑо¿£¬½ø¶øµÃµ½º¯ÊýµÄͼÏóµÄ²Ýͼ£¬½áºÏͼÏó·ÖÎöµÃµ½´ð°¸£®
½â´ð£º½â£ºÓÉÌâÒâx-{x}=x-m£¬f£¨x£©=|x-{x}|=|x-m|£¬
m=0ʱ£¬-
£¼x¡Ü
£¬f£¨x£©=|x|£¬
m=1ʱ£¬1-
£¼x¡Ü1+
£¬f£¨x£©=|x-1|£¬
m=2ʱ£¬2-
£¼x¡Ü2+
£¬f£¨x£©=|x-2|£¬
¡
»³öº¯ÊýµÄͼÏóÈçͼËùʾ£¬ÓÉͼÏó¿ÉÖªÕýÈ·ÃüÌâΪ¢Ù¢Ú¢Û£¬
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û
m=0ʱ£¬-
1 |
2 |
1 |
2 |
m=1ʱ£¬1-
1 |
2 |
1 |
2 |
m=2ʱ£¬2-
1 |
2 |
1 |
2 |
¡
»³öº¯ÊýµÄͼÏóÈçͼËùʾ£¬ÓÉͼÏó¿ÉÖªÕýÈ·ÃüÌâΪ¢Ù¢Ú¢Û£¬
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û
µãÆÀ£º±¾ÌâÊÇж¨ÒåÎÊÌ⣬¿¼²éº¯ÊýµÄÐÔÖÊ£¬¿É½áºÏͼÏó½øÐÐÑо¿£¬ÌåÏÖÊýÐνáºÏ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿